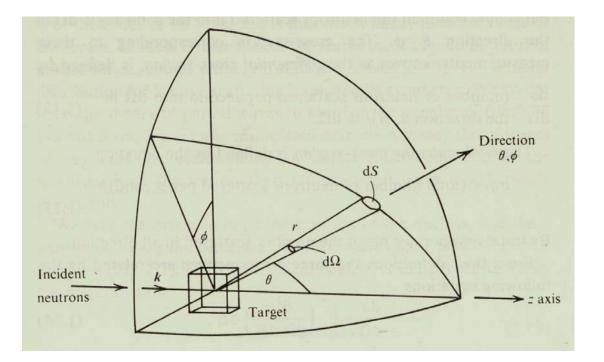


by

Roger Pynn

We Measure Neutrons Scattered from a Sample



 $\Phi = \text{number of incident neutrons per cm}^2 \text{ per second}$ $\sigma = \text{total number of neutrons scattered per second / } \Phi$ $\frac{d\sigma}{d\Omega} = \frac{\text{number of neutrons scattered per second into } d\Omega}{\Phi \, d\Omega}$ $\frac{d^2\sigma}{d\Omega dE} = \frac{\text{number of neutrons scattered per second into } d\Omega \& dE}{\Phi \, d\Omega \, dE}$

cross section

The effective area presented by a nucleus to an incident neutron. One unit for cross section is the barn, as in "can't hit the side of a barn!"

> σ measured in barns: 1 barn = 10⁻²⁴ cm²

```
Attenuation = exp(-N\sigma t)
N = # of atoms/unit volume
t = thickness
```

Scattering from Many Atoms

- Neutrons are scattered by nuclei
 - The range of nuclear forces is femtometers much less than the neutron wavelength so the scattering is point like (ripples on a pond)
- Energy of (thermal) neutron is too small to change nuclear energy
 - If the nucleus is fixed, the scattering is elastic
- We can add up the (elastic) scattering from an assembly of nuclei:

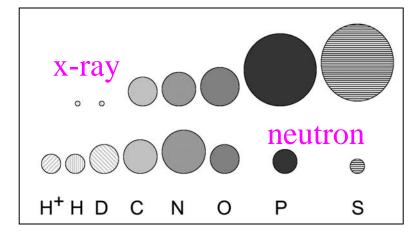
$$\frac{d\sigma}{d\Omega} = \sum_{i,j} b_i b_j e^{i(\vec{k}_0 - \vec{k}') \cdot (\vec{R}_i - \vec{R}_j)} = \sum_{i,j} b_i b_j e^{-i\vec{Q} \cdot (\vec{R}_i - \vec{R}_j)}$$

where the wavevector transfer Q is defined by $\vec{Q} = \vec{k}' - \vec{k_0}$

- $-b_i$ is called the coherent scattering length of nucleus *i*
- k is the incident neutron wavevector $(2\pi/\lambda)$; k' is the scattered wavevector
- The calculation assumes the scattering is weak (called Born Approximation)

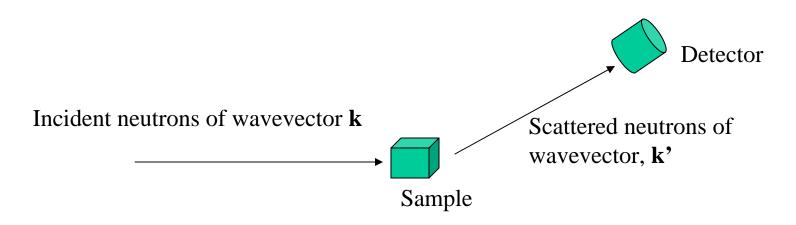
The Success of Neutron Scattering is Rooted in the Neutron's Interactions with Matter

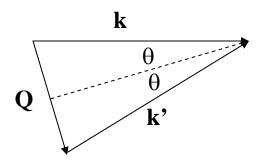
- Interact with nuclei not electrons
- Isotopic sensitivity (especially D and H)
- Penetrates sample containment
- Sensitive to bulk and buried structure



- Simple interpretation provides statistical averages, not single instances
- Wavelength similar to inter-atomic spacings
- Energy similar to thermal energies in matter
- Nuclear and magnetic interactions of similar strength

Scattering Triangle





Neutron diffraction measures the differential scattering cross section $d\sigma/d\Omega$ as a function of the scattering wavevector (**Q**)

For elastic scattering, k = k' so $Q = 2 k \sin \theta = (2 \pi/\lambda) \sin \theta$ The distance probed in the sample is: $d = 2\pi / Q$ (Combining the two equations gives Bragg's Law: $\lambda = 2 d \sin \theta$)

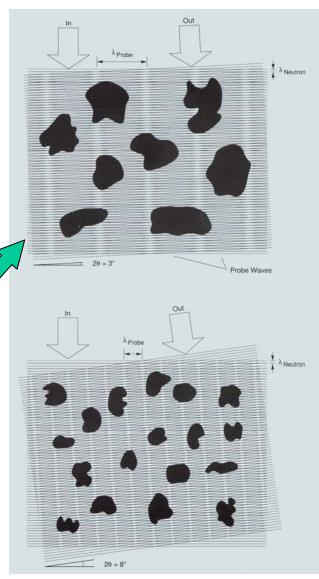
Small Angle Neutron Scattering (SANS) Is Used to Measure Large Objects (~10 nm to ~1 μm)

Small Q => large d (because d= $2\pi/Q$)

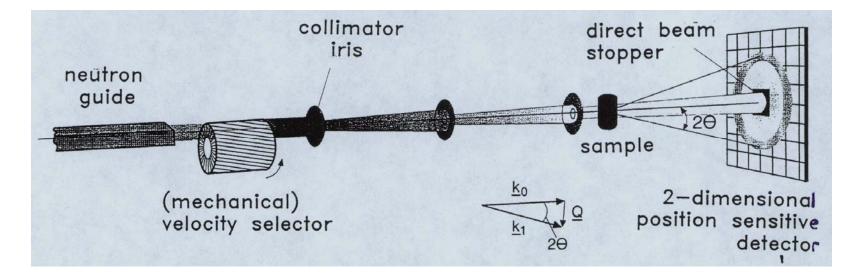
Large d => small θ (because λ = 2 d sin θ)

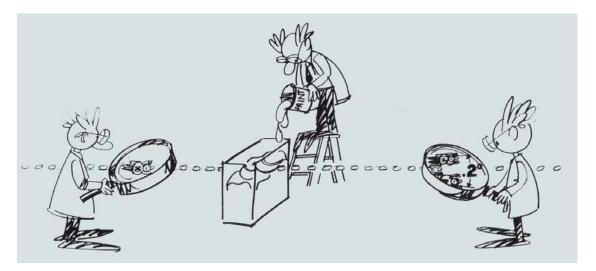
Scattering at small angles probes large length scales

Typical scattering angles for SANS are $\sim 0.3^{\circ}$ to 5°



Two Views of the Components of a Typical Reactor-based SANS Diffractometer

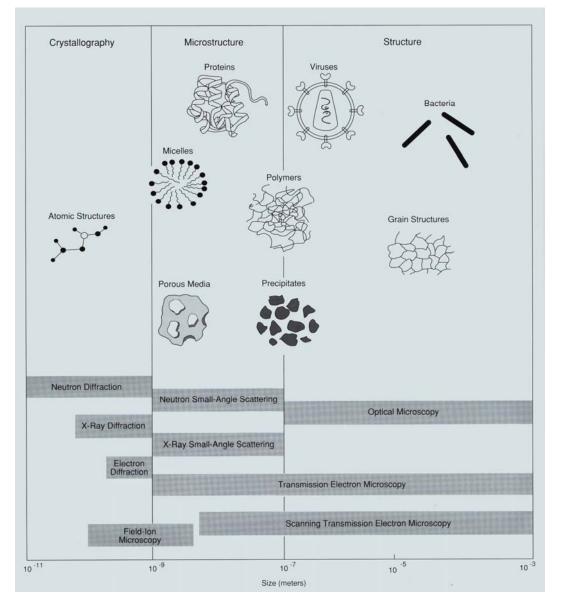




Note that SANS, like other diffraction methods, probes material structure in the direction of (vector) \vec{Q}

The NIST 30m SANS Instrument Under Construction

Where Does SANS Fit As a Structural Probe?



Typical SANS Applications

- Biology
 - Organization of biomolecular complexes in solution
 - Conformation changes affecting function of proteins, enzymes, protein/DNA complexes, membranes etc
 - Mechanisms and pathways for protein folding and DNA supercoiling

• Polymers

- Conformation of polymer molecules in solution and in the bulk
- Structure of microphase separated block copolymers
- Factors affecting miscibility of polymer blends
- Chemistry
 - Structure and interactions in colloid suspensions, microemeulsions, surfactant phases etc
 - Mechanisms of molecular self-assembly in solutions

Scattering Length Density

• Remember
$$\frac{d\sigma}{d\Omega} = b_{coh}^2 \left\langle \left| \int d\vec{r} . e^{-i\vec{Q}.\vec{r}} n_{nuc}(\vec{r}) \right|^2 \right\rangle$$

- What happens if Q is very small?
 - The phase factor will not change significantly between neighboring atoms
 - We can average the nuclear scattering potential over length scales $\sim 2\pi/10Q$
 - This average is called the scattering length density and denoted $\rho(\vec{r})$
- How do we calculate the SLD?
 - Easiest method: go to www.ncnr.nist.gov/resources/sldcalc.html
 - By hand: let us calculate the scattering length density for quartz SiO_2
 - Density is 2.66 gm.cm⁻³; Molecular weight is 60.08 gm. mole⁻¹
 - Number of molecules per $Å^3 = N = 10^{-24} (2.66/60.08) N_{avagadro} = 0.0267$ molecules per $Å^3$
 - SLD= Σb /volume = N($b_{Si} + 2b_O$) = 0.0267(4.15 + 11.6) 10⁻⁵ Å⁻² = 4.21 x10⁻⁶ Å⁻²
- A uniform SLD causes scattering only at Q=0; spatial variations in the SLD cause scattering at finite values of Q

SLD Calculation

- www.ncnr.nist.gov/resources/sldcalc.html
- Need to know chemical formula and density Compound C6H12 Enter Density (g/cm^3) 0.86 Not relevant for SLD Wavelength (A) 6 Calculate Neutron SLD -3.07E-7 (A^-2) Cu Ka SLD 8.34E-6 +9.36E-9i (A^-: X-ray values 8.33E-6 +2.08E-9i (A^-: Mo Ka SLD Background 5.93: 33.4 (cm^-1) Neutron Inc. XS Neutron Abs. XS 0.0823 (cm^-1) Determine best sample thickness → Neutron 1/e length 0.166 (cm)

Note units of the cross section – this is cross section per unit volume of sample

SANS Measures Particle Shapes and Inter-particle Correlations

$$\frac{d\sigma}{d\Omega} = \langle b \rangle^{2} \int_{space} d^{3}r \int_{space} d^{3}r' n_{N}(\vec{r}) n_{N}(\vec{r}') e^{i\vec{Q}\cdot(\vec{r}-\vec{r}')}$$

$$= \int_{space} d^{3}R \int_{space} d^{3}R' \langle n_{P}(\vec{R}) n_{P}(\vec{R}') \rangle e^{i\vec{Q}\cdot(\vec{R}-\vec{R}')} \left\langle \left| (\rho - \rho_{0}) \int_{particle} d^{3}x \cdot e^{i\vec{Q}\cdot\vec{x}} \right|^{2} \right\rangle_{orientation}$$

$$\frac{d\sigma}{d\Omega} = (\rho - \rho_{0})^{2} \left| F(\vec{Q}) \right|^{2} V_{p}^{2} N_{P} \int_{space} d^{3}R \cdot G_{P}(\vec{R}) \cdot e^{i\vec{Q}\cdot\vec{R}}$$

where G_P is the particle - particle correlation function (the probability that there is a particle at \vec{R} if there's one at the origin) and $\left|F(\vec{Q})\right|^2$ is the particle form factor :

$$\left|F(\vec{Q})\right|^{2} = \frac{1}{V_{p}^{2}} \left\langle \left|\int_{particle} d^{3}x \cdot e^{i\vec{Q}\cdot\vec{x}}\right|^{2} \right\rangle_{orientation}$$

Scattering from Independent Particles

Scattered intensity per unit volume of sample = $I(\vec{Q}) = \frac{1}{V} \frac{d\sigma}{d\Omega} = \frac{1}{V} \left\langle \left| \int \rho(\vec{r}) e^{i\vec{Q}\cdot\vec{r}} d\vec{r} \right|^2 \right\rangle$ For identical particles

ν

contrast factor

particle form factor $|F(\vec{Q})|^2$

Note that
$$I(0) = \frac{N}{V} (\rho_p - \rho_0)^2 V_p^2$$

Particle concentration $c = NV_p/V$ and particle molecular weight $M_w = \rho V_p N_A$ where ρ is the particle mass density and N_A is Avagadro's number

so $I(0) = \frac{cM_w}{\rho N_A} (\rho_p - \rho_0)^2$ provides a way to find the particle molecular weight

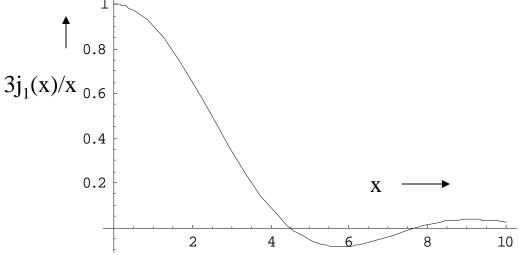
Scattering for Spherical Particles

The particle form factor $\left|F(\vec{Q})\right|^2 = \left|\int_{V} d\vec{r} e^{i\vec{Q}\cdot\vec{r}}\right|^2$ is determined by the particle shape.

For a sphere of radius R, F(Q) only depends on the magnitude of Q :

$$F_{sphere}(Q) = 3V_0 \left[\frac{\sin QR - QR \cos QR}{(QR)^3} \right] \equiv \frac{3V_0}{QR} j_1(QR) \rightarrow V_0 \text{ at } Q = 0$$

Thus, as $Q \rightarrow 0$, the total scattering from an assembly of uncorrelated spherical particles [i.e. when $G(\vec{r}) \rightarrow \delta(\vec{r})$] is proportional to the square of the particle volume times the number of particles.



Radius of Gyration Is the Particle "Size" Usually Deduced From SANS Measurements

If we measure \vec{r} from the centroid of the particle and expand the exponential in the definition of the form factor at small Q :

$$F(Q) = \int_{V} d\vec{r} e^{i\vec{Q}.\vec{r}} \approx V_{0} + i \int_{V} \vec{Q}.\vec{r} d^{3}r - \frac{1}{2} \int_{V} (\vec{Q}.\vec{r})^{2} d^{3}r + \dots$$
$$= V_{0} \left[1 - \frac{Q^{2}}{2} \frac{\int_{0}^{\pi} \cos^{2}\theta \sin\theta.d\theta}{\int_{0}^{\pi} \int_{V_{0}} f^{2} d^{3}r} + \dots \right] = V_{0} \left[1 - \frac{Q^{2}r_{g}^{2}}{6} + \dots \right] \approx V_{0} e^{-\frac{Q^{2}r_{g}^{2}}{6}}$$

where r_g is the radius of gyration is $r_g = \int_V R^2 d^3 r / \int_V d^3 r$. It is usually obtained from a fit to SANS data at low Q (in the so - called Guinier region) or by plotting ln(Intensity) v Q². The slope of the data at the lowest values of Q is $r_g^2/3$. It is easily verified that the expression for the form factor of a sphere is a special case of this general result.

Incoherent Background and Absorption

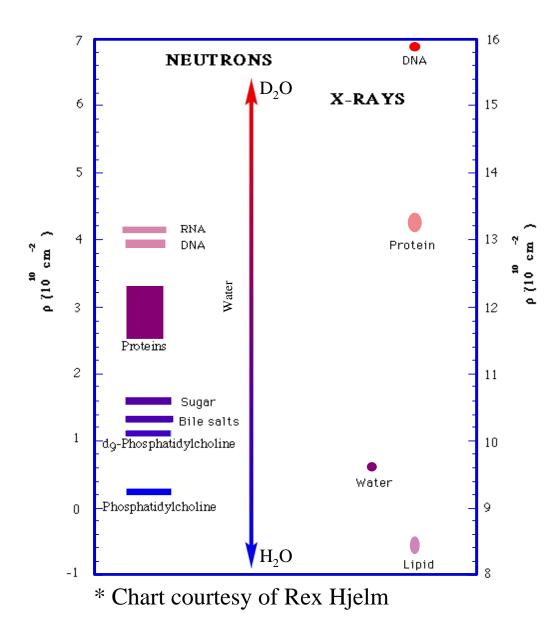
- In addition to coherent (Q-dependent) scattering, neutrons may be scattered incoherently
- Incoherent scattering is not directionally (Q) dependent
 In SANS (or reflectometry) measurements it is a uniform background
- Incoherent scattering arises from two sources:
 - Spin incoherent scattering (the neutron-nucleus state can be singlet or triplet and these have different scattering lengths)
 - Isotopic incoherent scattering
- Look up incoherent scattering lengths (included in NIST SLD calculator – see next VG)
- Neutrons may also be absorbed by some nuclei

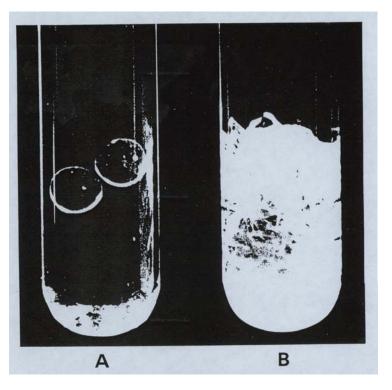
Calculating Form Factors

- www.ncnr.nist.gov/resources/simulator.html
- Note: T(1 mm H₂O) = 0.5; T(1 mm D₂O) = 0.9 $d\sigma/d\Omega$ (H₂O) = 1 cm⁻¹; $d\sigma/d\Omega$ (D₂O) = 0.06 cm⁻¹

H₂O background No background SANS data simulator SANS data simulator VidOmega (cm⁻¹)] iga tom"?) -4.5 and the 41 andy. InglQ (A⁻¹) log[Q (A⁻¹)] Show Data \$ + Sphere Flat Log-Log Smear data? Vol Fraction (0-1) 0.01 Scale 1 Qmin: 0.001 Radius (A) 60.0 Qmax: 0.5 Contrast (A-2) 1e-6 # Points: 128 Background (cm-1) 0

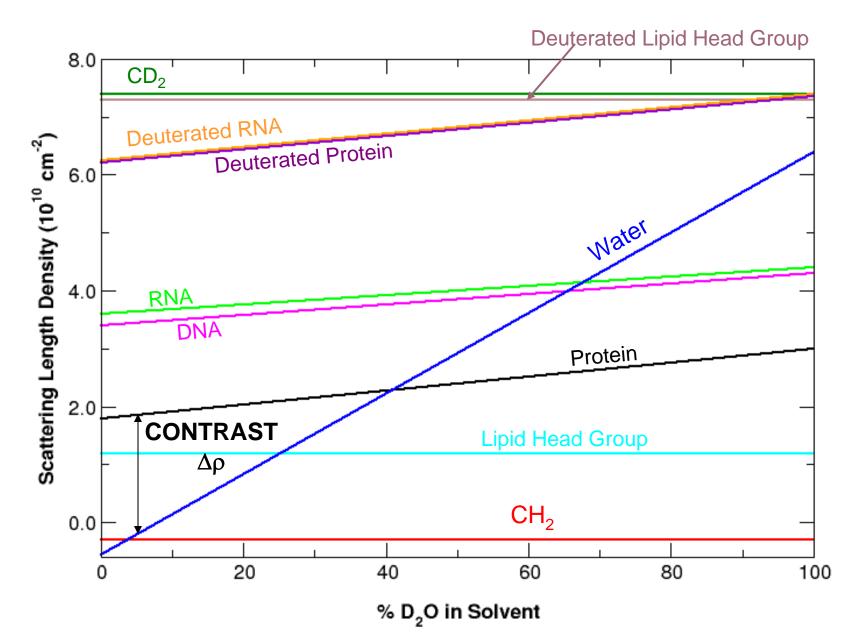
Contrast & Contrast Matching





Both tubes contain borosilicate beads + pyrex fibers + solvent. (A) solvent refractive index matched to pyrex;. (B) solvent index different from both beads and fibers – scattering from fibers dominates

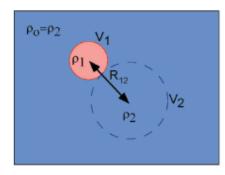
Contrast Variation



Isotopic Contrast for Neutrons

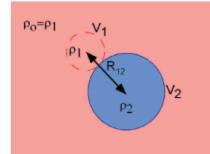
Hydrogen Isotope	Scattering Length b (fm)	Nickel Isotope	Scattering Lengths b (fm)
$^{1}\mathrm{H}$	-3.7409 (11)	⁵⁸ Ni	15.0 (5)
2 D	6.674 (6)	⁶⁰ Ni	2.8 (1)
³ T	4.792 (27)	⁶¹ Ni	7.60 (6)
		⁶² Ni	-8.7 (2)
		⁶⁴ Ni	-0.38 (7)

Using Contrast Variation to Study Compound Particles



$$I_1(Q) = (\rho_1 - \rho_2)^2 F_1^2$$

Examples include nucleosomes (protein/DNA) and ribosomes (poteins/RNA)

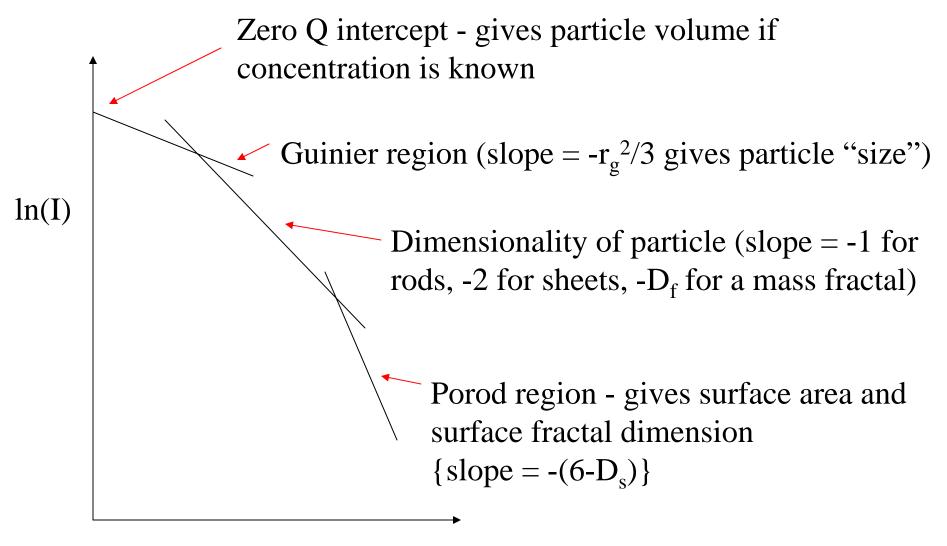


$$I_2(Q) = (\rho_2 - \rho_1)^2 F_2^2$$



Viewgraph from Charles Glinka (NIST)

What can we Learn from SANS?



ln(Q)

Sample Requirements for SANS

- Monodisperse particles, non-interacting to measure shape
- Concentration: 1-5 mg/ml
- Volume: 350-700 μl per sample
- Data collection time: 0.5-6 hrs per sample
- Typical biology experiment: 2-4 days
- Deuterated solvent is highly desirable
- Multiple concentrations are usually necessary.
- Specific deuteration may be necessary.
- Multiple solvents of different deuteration are highly desirable → contrast variation.

References

- Viewgraphs describing the NIST 30-m SANS instrument
 - www.ncnr.nist.gov/programs/sans/tutorials/30mSANS_desc.pdf
- SANS data can be simulated for various particle shapes using the programs available at:
 - www.ncnr.nist.gov/resources/simulator.html
- To choose instrument parameters for a SANS experiment at NIST go to:
 - www.ncnr.nist.gov/resources/sansplan.html
- A very good description of SANS experiments can be found at: http://www.strubi.ox.ac.uk/people/gilbert/sans.html

