

by

Roger Pynn

Indiana University & Spallation Neutron Source

This Lecture

- Short revision:
 - Magnetic properties of the neutron
 - Magnetic scattering of neutrons
- Inelastic magnetic scattering of neutrons
- Scattering by unpaired electrons
- The effect of magnetic scattering on the neutron's spin state
- Examples of inelastic magnetic neutron scattering
- Spin waves in ferromagnets
- Kinematics of neutron scattering
- Triple axis spectrometers
 - Spin waves and Stoner modes in iron
- TOF spectrometers
 - Spin waves in cobalt
- Magnetic excitations in chromium
- Crystal field excitations
- Low dimensional magnets
 - $CsNiF_3$ (a 1d easy plane FM)
 - TMMC (a 1d easy plane AFM)
 - $KCuF_3$ (a singlet ground state chain)

Magnetic Properties of the Neutron

The neutron has a magnetic moment of -9.649 x 10⁻²⁷ JT⁻¹

$$\vec{\mu}_n = -\gamma \mu_N \vec{\sigma}$$

where $\mu_N = \frac{e\hbar}{2m_p}$ is the nuclear magneton,
 m_p = proton mass, e = proton charge and $\gamma = 1.913$

 $\vec{\sigma}$ is the Pauli spin operator for the neutron. Its eignevalues are ± 1

- Note that the neutron's spin and magnetic moment are antiparallel
- Because of its magnetic moment, the neutron feels a potential given by:

$$V_m(\vec{r}) = -\vec{\mu}_n \cdot \vec{B}(\vec{r})$$
 where $\vec{B}(\vec{r}) = \mu_0 \mu \vec{H}(\vec{r}) = \mu_0 [\vec{H}(\vec{r}) + \vec{M}(\vec{r})]$

- Thus the neutron senses the distribution of magnetization in a material
- Homework problems: What is the Zeeman energy in meV of a neutron in a 1 Tesla field? At what temperature is the Boltzmann energy equal to this Zeeman energy? What is the effective scattering length of a "point" magnetic moment of one Bohr magneton?

Magnetic Scattering of the Neutron

- For nuclear scattering, the matrix element that appears in the expression for the scattering cross section is: $\sum_{i} b_{j} e^{i\vec{Q}.\vec{R}_{j}}$
- The equivalent matrix element for magnetic scattering is:

$$\gamma r_0 \frac{1}{2\mu_B} \vec{\sigma}.\vec{M}_{\perp}(\vec{Q})$$
 where $\mu_B = \frac{e\hbar}{2m_e}$ is the Bohr magneton (9.27 x 10⁻²⁴ JT⁻¹)
and $r_0 = \frac{\mu_0}{4\pi} \frac{e^2}{m_e}$ is classical radius of the electron (2.818 x 10⁻⁶ nm)

- Here $\vec{M}_{\perp}(\vec{Q})$ is the component of the Fourier transform of the magnetization that is perpendicular to the scattering vector \vec{Q} . This form arises directly from the dipolar nature of the magnetic interaction.
- Unlike the neutron-nucleus interaction, the magnetic interaction of the neutron with a scattering system specifically depends on neutron spin

Derivation

The \vec{B} field at distance \vec{R} from a magnetic moment \vec{M} is

$$\frac{\mu_0}{4\pi}\vec{\nabla} \times \left(\frac{\vec{M} \times \vec{R}}{R^3}\right) = -\frac{\mu_0}{4\pi}\vec{\nabla} \times \left(\vec{M} \times \nabla(1/R)\right)$$

Since
$$\int \frac{1}{q^2} \exp(i\vec{q}.\vec{R})d\vec{q} = 2\pi \int_0^\infty dq \int_{-1}^1 \exp(iqR\cos\theta)d(\cos\theta) = 4\pi \int_0^\infty \frac{\sin(qR)}{qR}dq = \frac{2\pi^2}{R}$$

$$\vec{\nabla} \times \left(\frac{\vec{M} \times \vec{R}}{R^3}\right) = -\frac{1}{2\pi^2} \int \frac{1}{q^2} \vec{\nabla} \times \left(\vec{M} \times \nabla \{\exp i\vec{q}.\vec{R}\}\right) d\vec{q}$$

But $\vec{M} \times \nabla \{\exp i\vec{q}.\vec{R}\} = i\vec{M} \times \vec{q} \exp i\vec{q}.\vec{R}$ and $\vec{\nabla} \times \vec{M} \times \vec{q} \exp i\vec{q}.\vec{R} = i\vec{q} \times \vec{M} \times \vec{q} \exp i\vec{q}.\vec{R}$

so
$$\vec{\nabla} \times \left(\frac{\vec{M}\Lambda\vec{R}}{R^3}\right) = \frac{1}{2\pi^2} \int \frac{1}{q^2} \vec{q} \times \left(\vec{M} \times \vec{q}\right) \{\exp i\vec{q}.\vec{R}\} d\vec{q} = \frac{1}{2\pi^2} \int \vec{M}_{\perp}(\vec{q}) \{\exp i\vec{q}.\vec{R}\} d\vec{q}$$

The Magnetic Scattering Cross Section

- Development of the magnetic scattering cross section follows the same formalism as for the nuclear cross section, with nuclear matrix element replaced by the magnetic interaction matrix element given above
- Need to keep the explicit dependence on neutron spin (or average over neutron spin states for an unpolarized neutron beam).
 - Magnetic scattering may cause a change in the neutron's spin state
- General expressions tend to be complicated, so specific expressions are obtained for various contributions to sample magnetization e.g. unpaired electron spins
- Homework: compare typical coherent nuclear scattering lengths (a few fm) with the magnetic scattering length for an atom with a one Bohr magneton magnetic moment. What do you notice? What is the magnitude of magnetic scattering if all the sample moments are parallel to the scattering vector, Q?

What Happens to a Neutron's Spin When the Neutron is Scattered?

 The cross section for magnetic scattering that takes the neutron spin state from σ->σ' and the scattering system from λ->λ' is:

$$\left(\frac{d^{2}\sigma}{d\Omega.dE}\right)_{\sigma\lambda\to\sigma'\lambda'} = \left(\frac{\gamma r_{0}}{2\mu_{B}}\right)^{2} \frac{k'}{k} \left|\left\langle\sigma'\lambda'\right|\vec{\sigma}.\vec{M}_{\perp}(\vec{Q})\right|\sigma\lambda\right\rangle^{2} \delta(E_{\lambda} - E\lambda' + \hbar\omega)$$

• One can show (see Squires) that if $|u\rangle$, $|v\rangle$ are the neutron spin eigenstates:

$$\left\langle u \left| \vec{\sigma}.\vec{M}_{\perp} \right| u \right\rangle = M_{\perp z}; \quad \left\langle v \left| \vec{\sigma}.\vec{M}_{\perp} \right| v \right\rangle = -M_{\perp z}; \quad \left\langle v \left| \vec{\sigma}.\vec{M}_{\perp} \right| u \right\rangle = M_{\perp x} + iM_{\perp y}; \quad \left\langle u \left| \vec{\sigma}.\vec{M}_{\perp} \right| v \right\rangle = M_{\perp x} - iM_{\perp y}$$

so, components of M_{perp} parallel to the neutron's magnetic moment (z) does not change the neutron spin, whereas perpendicular components of M_{perp} 'flip' the neutron's spin

- Homework: show that for a paramagnet (where $\langle S_i^{\alpha} S_j^{\beta} \rangle = \frac{1}{3} \delta_{ij} \delta_{\alpha\beta} S(S+1)$ for spins i and j)
 - If z is parallel to \mathbf{Q} , the scattering is entirely spin flip
 - If z is perpendicular to \mathbf{Q} , half the scattering is spin flip

Inelastic Scattering by Ions with Unpaired Electrons

 Including only magnetization due to unpaired electron spins and assuming an unpolarized incident neutron beam:

$$\frac{d^{2}\sigma}{d\Omega.dE} = \frac{(\gamma r_{0})^{2}}{2\pi\hbar} \frac{k'}{k} \sum_{\alpha,\beta} (\delta_{\alpha\beta} - \hat{Q}_{\alpha}\hat{Q}_{\beta}) \sum_{ldl'd'} F_{d'}^{*}(\vec{Q})F_{d}(\vec{Q})$$
$$\times \int_{-\infty}^{\infty} dt \left\langle \exp\{-i\vec{Q}.\vec{R}_{l'd'}(0)\}\exp\{i\vec{Q}.\vec{R}_{ld}(t)\}\right\rangle \left\langle S_{ld}^{\alpha}(0)S_{ld}^{\beta}(t)\right\rangle e^{-i\omega t}$$

where $F_d(Q)$ is the Fourier transform of the electron spin density around atom *d*, often called the atomic form factor; S^{α} is the α component of the electron spin and *I*,*d* labels an atom *d* in unit cell *I*

• This expression can be manipulated to give the scattering cross sections for elastic magnetic scattering, inelastic magnetic scattering and magneto-vibrational scattering

"High" and "Low" Temperature

- At high T, electron spins often behave as if they are free -paramagnet
- They can be progressively screened as T decreases by coherent reorganization of the conduction electrons leading to Kondo screening and mixed valency
- In metals, the spins often condense into ordered states FM, AFM, SDW, CDW, SC
- A spin or orbital excitation of these states appears the momentum dependence of excitation energy gives a measure of magnetic interaction (crystal field, spin-orbit, exchange interaction etc)
- Neutron can probe not only the linear excitations but have also discovered a host of exotic magnetic excitations
 - The underlying reason is that the neutron is a spin-1 probe it links energy levels that differ by S = 1

Inelastic Magnetic Neutron Scattering

- Conventional spin waves (FM and AFM) in systems with itinerant & localized electrons
- Stoner modes
- Crystal field excitations
- Excitations in low dimensional magnets
 - Effects of Hamiltonian symmetry (Ising, XY, Heisenberg)
 - Effects of spin value (Haldane gap for S=1 and not S=1/2)
- Non-linear magnetic excitations (solitons, spinons, beathers etc)
- Diffusive versus propagating excitations
- Magnetic critical scattering
- Spin glasses
- Frustrated magnets
- Singlet ground state systems
- High temperature superconductors
- Correlated electron systems
- Quantum fluctuations and QCPs

Inelastic Magnetic Scattering of Neutrons

• In the simplest case, atomic spins in a ferromagnet precess about the direction of mean magnetization

$$H = \sum_{l,l'} J(\vec{l} - \vec{l}') \vec{S}_l \cdot \vec{S}_{l'} = H_0 + \sum_q \hbar \omega_q b_q^+ b_q$$

Heisenberg interaction spin waves (magnons)

with

$$\hbar \omega_q = 2S(J_0 - J_q)$$
 where $J_q = \sum_l J(\vec{l}) e^{i\vec{q}.\vec{l}}$

 $\hbar \omega_q = Dq^2$ is the dispersion relation for a ferromagnet

Fluctuating spin is perpendicular to mean spin direction

Spin wave animation courtesy of A. Zheludev (ORNL)

Kinematics of Neutron Scattering

• Conservation of energy and momentum applies to scattering and limits the accessible Q and ω values.

$$\vec{Q} = \vec{k} - \vec{k}'$$
 and $\hbar\omega = E_i - E_f$

$$Q_{\perp} = \sqrt{\frac{2m(E_i - \omega)}{\hbar^2}} \sin(\phi)$$

$$Q_{II} = \sqrt{\frac{2m}{\hbar^2}} \left[\sqrt{E_i} - \sqrt{(E_i - \omega)} \cos(\phi)\right]$$

Triple-Axis Spectrometer

Used at reactors to measure excitations for 40 years

Every research reactor has one or a suite of TAS optimised for different energy ranges

Design principles essentially unchanged

Constantly evolves as technology improves

IN20 (ILL)

Triple-Axis Spectrometer (schematic)

Viewgraph courtesy of R Osborn

Constant Q and Constant E Scans

Spin Wave Cross Section (Heisenberg Ferromagnet)

$$\frac{d^2\sigma}{d\Omega \ d\omega} = \left(\gamma r_0\right)^2 \frac{\left(2\pi\right)^3}{V} \frac{k'}{k} \left\{\frac{1}{2}gF(\vec{Q})\right\}^2 \exp\left\{-2W(\vec{Q})\right\} \left(1 + \hat{Q}_z^2\right) \frac{1}{2}S$$
$$\sum_{\tau,q} \left\langle n_q + 1\right\rangle \delta(\vec{Q} - \vec{q} - \vec{\tau})\delta(\omega - \omega_q) + \left\langle n_q\right\rangle \delta(\vec{Q} + \vec{q} - \vec{\tau})\delta(\omega + \omega_q)$$

Spin Wave Creation

This is what we see in a constant-E scan. Note the effect of detailed balance $S(-\omega) = \exp(-\omega/kBT) S(\omega)$

Viewgraph courtesy of R. Osborn

Ferromagnets

- Localized magnets (eg EuO and EuS) show spin waves (magnons) of the type pictured previously – i.e. precessing spins
- What about iron an itinerant-electron magnet?
- Use the band structure to get the moment right -> band splitting parameter $\Delta = 2.2 \text{ meV}$
- Leads to single-particle excitations called Stoner modes

- Correlated electrons lead to spin waves
 - Izuyama, Kim, Kubo, J. Phys. Soc. Japan 18, 1025 (1963);
 - J. Hubbard, Proc. Roc. Soc. A276, 238 (1963)

Fe Magnon Dispersion vs. T

Lynn, Phys. Rev. B11, 2624 (1975).

Viewgraph courtesy of J. Lynn

Iron: Magnon Intensities fall at the Boundary of the Stoner Continuum

Mook and Nicklow, PRB7, 336 (1973) Lynn, Phys. Rev. B**11**, 2624 (1975)

Viewgraph courtesy of J. Lynn

Direct Geometry Chopper Spectrometer e.g. MAPS at ISIS

SNS has a similar instruments: ARCS and SEQUOIA

La_{0.7}Pb_{0.3}MnO₃ - CMR Ferromagnet

Perring et al., Phys Rev. Lett. 77, 711 (1996)

Spin Waves in Cobalt Measured on MAPS at ISIS

$$H = -J\Sigma S_{j}S_{j}$$

 $12 SJ = 199 \pm 7 \text{ meV}$ $\gamma = 69 \pm 12 \text{ meV}$

Lest you think Magnetic Excitations in Metals are Simple....

- Chromium has an SDW ground state at low T
- It can be placed in a single-Q state by cooling in a large field
 Leads to "visible" and "silent" SDW peaks
- When a strong field is applied perpendicular to QSDW, a single spin direction is favored
 - Satellites corresponding to the other domain are "supressed"

Magnetic Excitations in Chromium are Strange

- We would expect steep spin waves starting at the satellites
- A scan along (h,0,0) at E = 4 meV shows:
 - 3-peaked structure in nsf and sf channels
 - The side peaks are close to but not at the SDW – wavevectors
 - If the side peaks were steep spin waves,
 they should be in the nsf channel *only*
 - We have no obvious explanation for the
 h = 1 peaks in either sf or nsf channels
 - At E = 6 meV, further "modes" appear
 - No existing theory can even qualitatively explain our results.

Crystal Electric Field Excitations

- Surrounding atoms generate an electric field (CEF) on atomic electrons -> a manifold of electron states whose energies depend on CEF.
- Excitations between these states provide info about CEF
- Example: Er_{0.003}Y_{0.997}Al₂ (cubic Laves-phase structure)

B. Frick and M. Loewenhaupt [Z. Phys. B, **63**, 213 (1986)]

Low Dimensional Magnets

- Materials in which exchange coupling between magnetic ions varies with direction, usually due to spatial separation
- Magnetic anisotropy (usually single site) causes the number of coupled spin components to vary from material to material (n=1, Ising; n=2, X-Y; n=3, Heisenberg)
- Initial motivation was to understand long-range order in lowdimensional systems, phase transitions and the effects on excitations
- But then things got complicated:
 - Excitations can be non-linear/topological solitons etc
 - The value of the magnetic spin matters Haldane gap
 - Which spin components are really fluctuating?
 - Singlet ground states and quantum fluctuations
 - etc

Low-dimensional magnets

S=1/2 Heisenberg antiferromagnet KCuCl₃

Viewgraph courtesy of K Kakurai

M. Steiner, J. Villain and C.G. Windsor, Advances in Physics 25(1976) 87

S=1 easy plane ferromagnet CsNiF₃

S=5/2 Heisenberg antiferromagnet TMMC

M. Steiner, B. Dorner: Spin Wave Measurements in the One Dimensional Ferromagnet CsNiF₃. Solid State Communications 12, S. 537-540 (1973) Viewgraph from K Kakurai

Solitons in CsNiF₃

- In a strong magnetic field, Ni spins aligned perp to chain axis
- Possibility of solitons a propagating "twist" of the spins about the chain axis
 - magnetic fluctuations predominantly perpendicular to the chain direction.
- Solitons give rise to peak at ∆E = 0 in neutron scattering which has to be separated from:
 - incoherent scattering estimate at low T where material is 3d ordered
 - double magnon magnetization fluctuations parallel to chain so measure with Q close to parallel to the chain direction

Exp & theoretical soliton intensity

CsNiF₃ with Neutron Polarization Analysis

- In a saturated FM with $\vec{H} / / \vec{Q}$, spin wave scattering flips the neutron spin & the operators involved are the same as creation and annihilation operators for spin waves in an isotropic Heisenberg system, so SW creation should appear in the +- cross section.
 - Data are consistent with this at T = 12Kbut not at T = 2.1K (red & green arrows)
 - Hamiltonian for CsNiF₃ is NOT isotropic at low T (Kakurai et al, J. Phys C17, L123, 1984)

Neutron polarization for spin waves for an isotropic Heisenberg system (dashed) compared with observed and calculated for $CsNiF_3$

TMMC, a 1-d AFM, didn't even have the "right" number of modes!

- In spin flop phase, expect in-plane (IP; x) and out-of-plane (OP; z) spin wave fluctuations, plus double magnon modes (y) – 4 modes expected but 5 are immediately obvious.
- It turns out that the mag field causes a non-linear coupling of IP and OP excitations, giving new excitations with energies equal to the sum & difference of the single SW modes
- The new excitation is one of these – message non-linear effects are ubiquitous

Boucher et al; PRL 64, 1557 (1990)

KCuF₃ Excitations: s=1/2 Heisenberg AFM Chain

Singlet ground state with excitations originally interpreted as spin waves
Broad peak can only be explained by continuum

First clear evidence of continuum scattering in S=1/2 chain

- Intensity scale: A = 1.78 + 0.01 + 0.5
- c.f. numerical work:
 - A = 1.43
- Coupling constant: $J = 34.1 \pm 0.6 \text{ meV}$

D.A.Tennant et al, Phys. Rev. Lett. 70 4003 (1993)

Viewgraph from Ray Osborn

KCuF₃ Excitations (ISIS)

Direct observation of the continuum

Stephen Nagler (ORNL) Bella Lake(Oxford) Alan Tennant (St. Andrews) Radu Coldea(ISIS/ORNL)

Viewgraph from Ray Osborn