Neutron Spin Echo: Probing Dynamics in Complex Fluids

By

Roger Pynn*

Indiana University and the Spallation Neutron Source
*With contributions from B. Farago (ILL), S. Longeville (Saclay), M. Rheinstadter (U. Missouri) and A. Vorobiev (ESRF)

What Do We Need for a Basic Neutron Scattering Experiment?

- A source of neutrons
- A method to prescribe the wavevector of the neutrons incident on the sample
- (An interesting sample)
- A method to determine the wavevector of the scattered neutrons
- A neutron detector

Instrumental Resolution

- Uncertainties in the neutron wavelength \& direction of travel imply that Q and E can only be defined with a certain precision
- When the box-like resolution volumes in the figure are convolved, the overall resolution is Gaussian (central limit theorem) and has an elliptical shape in (Q,E) space
- The total signal in a scattering
 experiment is proportional to the phase space volume within the elliptical resolution volume - the better the resolution, the smaller the resolution volume and the lower the count rate

The Goal of Neutron Spin Echo is to Break the Inverse Relationship between Intensity \& Resolution

- Traditional - define both incident \& scattered wavevectors in order to define E and Q accurately
- Traditional - use collimators, monochromators, choppers etc to define both \mathbf{k}_{i} and \mathbf{k}_{f}
- NSE - measure as a function of the difference between appropriate components of \mathbf{k}_{i} and \mathbf{k}_{f} (original use: measure $\mathrm{k}_{i}-\mathrm{k}_{f}$ i.e. energy change)
- NSE - use the neutron's spin polarization to encode the difference between components of \mathbf{k}_{i} and \mathbf{k}_{f}
- NSE - can use large beam divergence \&/or poor monochromatization to increase signal intensity, while maintaining very good resolution

The Underlying Physics of Neutron Spin Echo (NSE) Technology is Larmor Precession of the Neutron's Spin

- The time evolution of the expectation value of the spin of a spin-1/2 particle in a magnetic field can be determined classically as:

$$
\begin{aligned}
& \frac{d \vec{s}}{d t}=\gamma \vec{s} \wedge \vec{B} \quad \Rightarrow \omega_{L}=|\gamma| B \\
& \gamma=-2913 * 2 \pi \text { Gauss }^{-1} \cdot s^{-1}
\end{aligned}
$$

- The total precession angle of the spin, ϕ, depends on the time the neutron spends in the field: $\phi=\omega_{L} t$

B (Gauss)	$\omega_{\llcorner }\left(10^{3}\right.$ rad. $\left.^{-1}\right)$	N (msec $\left.{ }^{-1}\right)$	Turns $/ \mathrm{m}$ for $4 \AA$ neutrons
10	183	29	~ 29

Larmor Precession allows the Neutron Spin to be Manipulated using π or $\pi / 2$ Spin-Turn Coils: Both are Needed for NSE

- The total precession angle of the spin, ϕ, depends on the time the neutron spends in the B field

$$
\phi=\omega_{L} t=\gamma B d / \mathrm{v}
$$

Number of turns $=\frac{1}{135.65} \cdot B[$ Gauss $] \cdot d[\mathrm{~cm}] \cdot \lambda[$ Angstroms $]$

Neutron Spin Echo (NSE) uses Larmor Precession to "Code" Neutron Velocities

- A neutron spin precesses at the Larmor frequency in a magnetic field, B. $\quad \omega_{L}=\gamma B$
- The total precession angle of the spin, ϕ, depends on the time the neutron spends in the field

$$
\stackrel{\rightharpoonup}{\vec{H}, \vec{\sigma}} \stackrel{\leftarrow \mathrm{~d} \rightarrow}{\substack{\rightarrow \\ \\ \\ \\ \\ \\ \\ \\ \mathrm{~B} \\ \text { Neutron velocity, v }}}
$$

Number of turns $=\frac{1}{135.65} \cdot B[$ Gauss $] \cdot d[\mathrm{~cm}] \cdot \lambda[$ Angstroms $]$
The precession angle ϕ is a measure of the neutron's speed v

The Principles of NSE are Very Simple

- If a spin rotates anticlockwise \& then clockwise by the same amount it comes back to the same orientation
- Need to reverse the direction of the applied field
- Independent of neutron speed provided the speed is constant
- The same effect can be obtained by reversing the precession angle at the mid-point and continuing the precession in the same sense
- Use a π rotation
- If the neutron's velocity, v , is changed by the sample, its spin will not come back to the same orientation
- The difference will be a measure of the change in the neutron's speed or energy

Simulations

Classical picture

- Single neutron
- Neutrons of different velocities

Quantum Mechanical Picture

- Quasi-elastic scattering
- Inelastic scattering

In NSE*, Neutron Spins Precess Before and After Scattering \& a

 Polarization Echo is Obtained if Scattering is Elastic

Elastic Scattering Event

Rotate spins to z and measure polarization

Rotate spins into
$x-y$ precession plane

Rotate spins through π about x axis

Final Polarization, $P=\left\langle\cos \left(\phi_{1}-\phi_{2}\right)\right\rangle$

Allow spins to precess around z : all spins are in the same direction at the echo point if $\Delta \mathrm{E}=0$

For Quasi-elastic Scattering, the Echo Polarization depends on Energy Transfer

- If the neutron changes energy when it scatters, the precession phases before \& after scattering, $\phi_{1} \& \phi_{2}$, will be different:
using $\quad \hbar \omega=\frac{1}{2} m\left(v_{1}^{2}-v_{2}^{2}\right) \approx m v \delta v$
$\phi_{1}-\phi_{2}=\gamma B d\left(\frac{1}{v_{1}}-\frac{1}{v_{2}}\right) \approx \frac{\gamma B d}{v^{2}} \delta v \approx \frac{\gamma B d \hbar \omega}{m v^{3}}=\frac{\gamma B d m^{2} \lambda^{3} \omega}{2 \pi h^{2}}$
- To lowest order, the difference between $\phi_{1} \& \phi_{2}$ depends only on ω (I.e. $v_{1}-v_{2}$) \& not on $v_{1} \& v_{2}$ separately
- The measured polarization, $<\mathrm{P}>$, is the average of $\cos \left(\phi_{1}-\phi_{2}\right)$ over all transmitted neutrons l.e.

$$
\langle P\rangle=\frac{\iint I(\lambda) S(\vec{Q}, \omega) \cos \left(\phi_{1}-\phi_{2}\right) d \lambda d \omega}{\iint I(\lambda) S(\vec{Q}, \omega) d \lambda d \omega}
$$

Neutron Polarization at the Echo Point is a Measure of the Intermediate Scattering Function
$\langle P\rangle=\frac{\iint I(\lambda) S(\vec{Q}, \omega) \cos \left(\phi_{1}-\phi_{2}\right) d \lambda d \omega}{\iint I(\lambda) S(\vec{Q}, \omega) d \lambda d \omega} \approx\left\langle\int S(\vec{Q}, \omega) \cos (\omega \tau) d \omega\right)=I(\vec{Q}, \tau)$
where the "spin echo time" $\tau=\gamma \mathrm{Bd} \frac{m^{2}}{2 \pi h^{2}} \lambda^{3}$

Bd $($ T.m $)$	λ (nm)	τ (ns)
1	0.4	12
1	0.6	40
1	1.0	186

- $I(\vec{Q}, t)$ is called the intermediate scattering function
- Time Fourier transform of $S(\overrightarrow{\mathrm{Q}}, \omega)$ or the $\overrightarrow{\mathrm{Q}}$ Fourier transform of $\mathrm{G}(\mathrm{r}, \mathrm{t})$, the two particle correlation function
- NSE probes the sample dynamics as a function of time rather than as a function of ω
- The spin echo time, τ, is the "correlation time"

Neutron Polarization is Measured using an Asymmetric Scan around the Echo Point

Because the echo point is the same for all neutron wavelengths, we can use a broad wavelength band and enhance the signal intensity

Field-Integral Inhomogeneities cause τ to vary over the Neutron Beam: They can be Corrected

- Solenoids (used as main precession fields) have fields that vary as r^{2} away from the axis of symmetry because of end effects (div $B=0$)

- According to Ampere's law, a current distribution that varies as r^{2} can correct the field-integral inhomogeneities for parallel paths
- Similar devices can be used to correct the integral along

Fresnel correction coil for IN15 divergent paths

What does a NSE Spectrometer Look Like? IN11 at ILL was the First

$$
\tau_{\max } \sim 50 \text { ns at } \lambda=10 \AA
$$

IN-11C and IN15

$\tau_{\max } \sim 12$ ns at $\lambda=10 \AA$ for IN11-C and $\tau_{\max } \sim 400$ ns at $\lambda=15 \AA$

NSE is also available at the NCNR

Neutron Spin Echo has significantly extended the (Q,E) range to which neutron scattering can be applied

Something Simple: A Single Diffusing Particle*

$$
\begin{aligned}
& S(\vec{Q})=\left\langle\sum_{i, j} b_{j} b_{j} e^{-\vec{Q}\left(\overrightarrow{(T-}-T_{j}\right)}\right\rangle \\
& S(\vec{Q})=\left(3 \rho R^{3} \frac{j_{1}(Q R)}{Q R}\right)^{2}
\end{aligned}
$$

$$
S(\vec{Q}, t)=\left\langle\sum_{i, j} b_{i} b_{j} e^{i \vec{Q} \cdot\left[F_{i}(0)-\bar{r}_{j}(t)\right]}\right\rangle
$$

$$
S(\vec{Q}, t)=S(\vec{Q}) e^{-D Q^{2} t}
$$

*Viewgraph courtesy of B. Farago

Polymer Reptation*

10% marked polymer chain (H) in deuterated matrix of the same polymer melt
at short time \Rightarrow Rouse dynamics $1 /$ tau $\sim q^{4}$ at longer times starts to feel the "tube" formed by the other chains (deGennes)
D. Richter, B. Ewen, B. Farago, et al., Physical Review Letters 62, 2140 (1989).
*viewgraph courtesy of B. Farago

[^0]
Neutron Spin Echo study of Deformations of Spherical Droplets*

Mesoscopic Membrane Fluctuations

Dispersion relation

Thermal membrane
fluctuations

Collective Excitations in Model Membranes*

*Measurements made by M. Rheinstadter

Other Larmor Precession Methods

- Neutron resonance spin echo (NRSE)
- Very similar to traditional NSE
- Can also be added to a triple axis spectrometer for "phonon focusing"
- Available at several European centers (LLB, Munich, HMI)
- Spin Echo Scattering Angle Measurement (SESAME)
- Measure spatial correlations over large distances
- Currently only available for SESANS at Delft
- Several prototypes being developed in the U.S. for SESANS and SERGIS
- MIEZE
- Energy resolved SANS
- Not yet implemented anywhere (as far as I know) although prototype was built at IPNS

An NRSE Triple Axis Spectrometer at HMI: Note the Tilted Coils

The Principle of Neutron Resonant Spin Echo

- Within a coil, the neutron is subjected to a steady, strong field, B_{0}, and a weak rf field $B_{1} \cos (\omega t)$ with a frequency $\omega=\omega_{0}=\gamma B_{0}$
- Typically, $\mathrm{B}_{0} \sim 100 \mathrm{G}$ and $\mathrm{B}_{1} \sim 1 \mathrm{G}$

- In a frame rotating with frequency ω_{0}, the neutron spin sees a constant field of magnitude B_{1}
- The length of the coil region is chosen so that the neutron spin precesses around B_{1} thru an angle π.
- The neutron precession phase is:

$$
\begin{aligned}
\phi_{\text {neutron }}^{\text {exit }} & =\phi_{R F}^{\text {exit }}+\left(\phi_{R F}^{\text {entry }}-\phi_{\text {neutron }}^{\text {entry }}\right) \\
& =2 \phi_{R F}^{\text {entry }}-\phi_{\text {neutron }}^{\text {entry }}+\omega_{0} d / v
\end{aligned}
$$

Neutron Spin Phases in an NRSE Spectrometer*

A B

Table 1. Spin orientation

	Time t	Phase field B_{r}	neutron Spin phase S
A	t_{A}	ωt_{A}	0
$\mathrm{~A}^{\prime}$	$t_{A^{\prime}}=t_{A}+\frac{d}{v}$	$\omega t_{A^{\prime}}$	$2 \omega t_{A}+\omega \frac{d}{v}$
B	$t_{B}=t_{A}+\frac{l_{A B}+d}{v}$	ωt_{B}	$2 \omega t_{A}+\omega \frac{d}{v}$
B	$t_{B^{\prime}}=t_{A}+\frac{\frac{l_{A B}+2 d}{}}{v}$	$\omega t_{B^{\prime}}$	$2 \omega \frac{l_{A B}+d}{v}$
C	t_{C}	$-\omega t_{C}$	$2 \omega \frac{l_{A B}+d}{v}$
C	$t_{C^{\prime}}=t_{C}+\frac{d}{v}$	$-\omega t_{C^{\prime}}$	$-\omega \frac{d}{v^{\prime}}-2 \omega t_{C}-2 \omega \frac{l_{A B}+d}{v}$
D	$t_{D}=t_{C}+\frac{l_{C D}+d}{v^{\prime}}$	$-\omega t_{D}$	$-\omega \frac{d}{v^{\prime}}-2 \omega t_{C}-2 \omega \frac{l_{A B}+d}{v}$
D^{\prime}	$t_{D^{\prime}}=t_{C}+\frac{l_{C D}+2 d}{v^{\prime}}$	$-\omega t_{D^{\prime}}$	$2 \omega\left(\frac{l_{A B}+d}{v}-\frac{l_{C D}+d}{v^{\prime}}\right)$

Echo occurs for elastic scattering when
$l_{A B}+d=l_{C D}+d$

* Courtesy of S. Longeville

The Measured Polarization for NRSE is given by an Expression Similar to that for Classical NSE

- Assume that $v^{\prime}=v+\delta v$ with δv small and expand to lowest order, giving:

$$
\langle P\rangle=\frac{\iint I(\lambda) S(\vec{Q}, \omega) \cos \left(\omega \tau_{N R S E}\right) d \lambda d \omega}{\iint I(\lambda) S(\vec{Q}, \omega) d \lambda d \omega}
$$

where the "spin echo time" $\tau_{\text {NRSE }}=2 \gamma B_{0}(l+d) \frac{m^{2}}{2 \pi h^{2}} \lambda^{3}$

- Note the additional factor of 2 in the echo time compared with classical NSE (a factor of 4 is obtained with "bootstrap" rf coils)
- The echo is obtained by varying the distance, l, between rf coils
- In NRSE, we measure neutron velocity using fixed "clocks" (the rf coils) whereas in NSE each neutron "carries its own clock" whose (Larmor) rate is set by the local magnetic field

SESAME: Tilted Field Boundaries to Code Scattering Angles

Spin Echo Scattering Angle Measurement (SESAME)

No Sample in Beam

Spin Echo Scattering Angle Measurement (SESAME) Scattering by the Sample

Spin Echo Scattering Angle Measurement (SESAME)

Scattering of a Divergent Beam

spin-echo angular coding
5. THE EXPERIMENT

spin-echo angular coding
6. SESANS EXAMPLE-1

TRANSMISSION GEOMETRY:
SPIN-ECHO SMALL ANGLE NEUTRON SCATTERING

Autocorrelation function obtained for the polystyrene spheres (water suspension).

[^0]: P. Schleger, B. Farago, C. Lartigue, et al., Physical Review Letters 81, 124 (1998).

